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a b s t r a c t

Laminar natural convection heat transfer inside fluid-filled, tilted square cavities cooled at one side and
partially heated at the opposite side, is studied numerically. A computational code based on the SIMPLE-
C algorithm is used for the solution of the system of mass, momentum, and energy transfer equations.
Simulations are performed for a complete range of heater sizes and locations, Rayleigh numbers based on
the side of the cavity from 103 to 107, Prandtl numbers from 0.7 to 700, and tilting angles of the enclosure
from �75� to þ75�, where negative angles correspond to configurations with the heater facing down-
wards. It is found that the heat transfer rate increases with increasing the Rayleigh and Prandtl numbers,
and the size of the heater. In addition, for negative inclinations of the enclosure the amount of heat
exchanged decreases with increasing the tilting angle, while for positive inclinations the heat transfer
rate either increases or decreases according as the heater is located toward the top or the bottom of the
cavity. Finally, as far as the heater location is specifically concerned, the heat transfer performance has
a peak for intermediate positions, the higher are the Rayleigh and Prandtl numbers, as well as the tilting
angle for positive inclinations, the closer to the bottom of the cavity is the optimum heater location for
maximum heat removal.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Natural convection heat transfer inside rectangular cavities with
differentially heated sides and insulated top and bottom walls has
been extensively studied, being of interest in numerous engi-
neering applications, e.g., heat removal from electronic equipment,
solar energy collection, and heat transfer in buildings. However, in
many practical cases heating takes place just over a portion of one
of the sidewalls, whose size and location may affect significantly
the amount of heat transferred across the enclosure.

Natural convection inside air-filled, two-dimensional rectan-
gular enclosures partially heated at one side and cooled at the
opposite side was studied first by Chu et al. [1], who conducted
a numerical parametric study for a complete range of heater sizes
and locations, height-to-width aspect ratios of the cavity from 0.4
to 5, and Rayleigh numbers RaH based on the height of the cavity
from 0 to 105. An experimental test of the accuracy of the solutions
obtained was also executed for a square channel. It was found that
the heat transfer rate across the enclosure increased with
increasing either the heater size or the cavity aspect ratio, while
fax: þ39 06 48 80 120.
. Corcione).
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showing a maximum at an optimum heater location, that shifted
toward the bottom of the enclosure with increasing RaH. The
numerical predictions of Chu et al. were then confirmed by Turner
and Flack [2], who executed two-dimensional experiments by
varying parametrically the height-to-width aspect ratio of the
cavity H/W in the range between 0.5 and 2, the dimensionless
heater size L/H in the range between 0.125 and 0.5, and the
dimensionless heater location S/H in the range between 0.125 and
0.875, for Pr ¼ 0.7 and Grashof numbers based on the cavity height
of 5 � 106 to 9 � 106.

Keyhani et al. [3] conducted heat transfer experiments in an
ethylene glycol-filled rectangular cavity of aspect ratio 16.5 with
one isothermal vertical cold wall and eleven alternately unheated
and flush-mounted rows of uniformly heated strips of equal height
on the opposing vertical wall, for modified Rayleigh numbers based
on the cavity width from 6 � 106 to 108. They found that the heat
transfer coefficient generally decreased with increasing the eleva-
tion of the heater, although not uniformly, and that the average
Nusselt number for the discrete heating case was substantially
higher than that of a fully heated vertical cavity, whichwas ascribed
to the inherent instability of the flow induced by the discrete
heating.

Chadwick et al. [4] performed experiments and numerical
simulations to study two-dimensional natural convection in an
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air-filled rectangular cavity of aspect ratio H/W ¼ 5 with single and
multiple discrete heat sources mounted flush on one sidewall. The
dimensionless heater length L/H for all the cases investigated was
0.133, while the modified Grashof number based on the heater
length was varied between 104 and 107. For the single heat source
configuration, dimensionless distances of the heater from the top of
the enclosure S/H ¼ 0.2, 0.5, and 0.8, were investigated. In contrast
with the data of Chu et al. the average Nusselt number did not show
any peak, rising monotonically with increasing S/H. However, it is
worth pointing out that since Chadwick et al. based their modified
Grashof number on the heater length rather than the cavity height,
the buoyancy magnitude in their experiments and simulations was
at least two orders higher than that imposed numerically by Chu
et al. This, taking into account the relationship between the optimal
heater location and the Rayleigh number observed by Chu et al.
may possibly justify the results of Chadwick et al. For the dual
heat source configuration, which was studied also for aspect ratios
H/W ¼ 4 and 6, heater locations of S/H ¼ 0.2 and 0.5, and S/H ¼ 0.5
and 0.8, were considered. As was the case of the single heater
enclosure, a generally more effective cooling was detected when
the discrete heating occurred toward the bottom of the cavity. In
addition, it was found that the heat transfer from the lower heater
was affected only marginally by the presence of the heater above,
while the upper heater exhibited heat transfer degradations up to
40% owing to the influence of the thermal wake from the heat
source below. Only minor effects on the heat transfer characteris-
tics of the enclosure were observed with varying the cavity aspect
ratio. Finally, in the multiple heat source configuration, the upper
and lower heaters were at fixed locations S/H ¼ 0.2 and 0.8,
respectively, which left an unheated section of dimensionless
length of 0.133 at the top and bottom of the enclosure. Three,
four, or five heat sources were then equally spaced between the
fixed adiabatic sections at the top and bottom.Moreover, the case of
a continuously heated wall was also considered, for which the
heater length was L/H ¼ 0.733 with adiabatic sections at the cavity
top and bottom having identical dimensionless length of 0.133.
As expected, the heat sources located in the lower part of the cavity
exhibited the highest heat transfer performance. In addition, in
accordance with the results of Keyhani et al. it was found that the
single continuous heater yielded generally lower local heat transfer
coefficient than the multiple heat sources.

Refai Ahmed and Yovanovic [5,6] performed a twin numerical
study on natural convection in air-filled square enclosures
discretely heated at one side, with the opposite side entirely cooled.
Results were obtained for Rayleigh numbers based on the heater
length in the range between 0 and 106, and relative size of the heat
source to the side of the enclosure in the range between 0.25 and 1,
with the heater located either at the top or at the bottom of the
discretely heated sidewall [5], or at the center of it [6]. It was found
that when the heater was located either at the bottom or at the
center of the sidewall, the average Nusselt number decreased with
increasing the heater size, at least for Rayleigh numbers higher
than nearly 300. This result is only apparently in disagreement with
the results derived by Chu et al. and by Turner and Flack, who based
their Rayleigh or Grashof numbers on the cavity height rather than
the heater length. In fact, once the scale length is properly changed,
the data of these authors show the same trend of those by Refai
Ahmed and Yovanovic. In contrast, when the heat source was
located at the top of the enclosure, the average Nusselt number was
found to increase with the heater size, regardless of the Rayleigh
number.

Ho and Chang [7] carried out a numerical investigation of
natural convection in air-filled rectangular cavities with four isoflux
heating strips mounted flush on one side, the other side being
cooled at uniform temperature. The size of the heaters and their
spacing, relative to the cavity height, were fixed at 1/30 and 13/75,
respectively. Computations were performed for height-to-width
aspect ratios of the enclosure in the range between 1 and 10, and
modified Rayleigh numbers (RaW)* based on the cavity width in the
range between 103 and 107. Experiments with a test cell of aspect
ratio H/W ¼ 10 were also executed to verify the accuracy of the
numerical results. It was found that the average Nusselt number
decreased with increasing the aspect ratio of the cavity, at a rate
which decreased with (RaW)*. Moreover, the thermal performance
of the heaters decreased with their elevation, showing a difference
which increased significantly with (RaW)*.

Polentini et al. [8] reported experimental data for a 3� 3 array of
square heat sources mounted flush on one vertical wall of a liquid-
filled rectangular cavity, whose opposite wall was cooled. The
height-to-depth aspect ratio of the enclosure, as well the size and
location of the nine heaters, were kept constant during the course
of the investigation. In particular, the heater size and pitch, relative
to the cavity height, were fixed at 0.133 and 0.166, respectively.
Experiments were performed with FC-77 and water, for height-to-
width aspect ratios of the cavity in the range between 2.5 and 7.5,
Rayleigh numbers based on the heater side in the range between
105 and 108, and tilting angles of the cavity with respect to the
gravity vector in the range between 0�, which corresponds to the
vertical configuration, and 90�, which corresponds to the hori-
zontal configuration with the heating elements located on the
bottom of the enclosure. In the vertical configuration, besides
heating all the nine elements, measurements were executed also by
heating either individual rows of elements separately, in order to
determine the effect of the heater location, or combinations of two
rows of elements simultaneously, in order to determine the effect
of both spacing and location of the heaters. When the heaters were
powered simultaneously, the heat transfer performance resulted to
be highest for the elements in the bottom row and lowest for the
elements in the top row. As expected, the heat transfer perfor-
mance of each row increased when the other rows were unheated,
since the effect of the thermal plume was eliminated. Moreover,
consistently with the data of previous researchers, the average
Nusselt number of the individually heated rows was found to
decrease with increasing the elevation of the row. Finally, the
effects of the Prandtl number and the cavity aspect ratio were
negligible, while the heat transfer performance of the heaters
enhanced significantly with increasing the tilting angle of the test
cell. Following the work of Polentini et al. several three-dimen-
sional investigations of natural convection induced by the same
3 � 3 array of discrete heat sources were then performed by
Heindel et al. [9,10], Tou et al. [11], Tou and Zhang [12], and Tso et al.
[13], for different fluids and ranges of the modified Rayleigh
number, the height-to-width aspect ratio of the enclosure, and the
tilting angle of the enclosure.

Liu and Phan-Tien [14] investigated numerically the optimum
spacing problem for three elements generating heat at uniform rate
per unit volume, mounted on a vertical conductive substrate inside
an air-filled rectangular enclosure cooled at the opposite sidewall.
The rear of the conducting substrate, as well as the top and bottom
walls of the enclosure, were assumed adiabatic. The height-to-
width aspect ratio of the enclosure, and the thickness of the
conductive substrate relative to the cavity width, were fixed at 7/4
and 1/16, respectively. The ratio between the heights of the heater
and the cavity, and the ratio between the widths of the heater and
the cavity, were fixed at 1/7 and 1/8, respectively. Simulations were
conducted for Rayleigh numbers based on the heat generation rate
of 104 and 105, and 14 different arrangements of the heating
elements. A thermal performance better than that typical of the
conventional equispaced setting was obtained when the center-to-
center distance among the heaters from bottom to top followed



Fig. 1. Sketch of the geometry and coordinate system.
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a geometric series, especially when the geometric ratio was the
golden mean, i.e., 1.618, which implied improvements of the order
of 10%.

The optimal distribution of discrete heat sources mounted on
the inside of one of the sidewalls of an air-filled square enclosure
cooled at the opposite wall was studied numerically some years
later by da Silva et al. [15,16] under the assumption of isoflux
heaters, for modified Rayleigh numbers in the range between 102

and 106, and heights of the heaters relative to the cavity size in the
range between 0.05 and 0.2. Computations were executed for
a single heater, and for two and three heat sources. For the single
heater, it was shown that the optimal location for maximum heat
transfer migrated toward the bottom of the cavity with increasing
the Rayleigh number. The same qualitative trend was observed for
themultiple heat sources, which was in accordancewith the results
of Liu and Phan-Tien.

Frederick and Quiroz [17] performed a numerical study on air-
filled cubical enclosures with a cold vertical wall and a hot square
sector located in the center of the opposite wall, for Rayleigh
numbers based on the cavity side in the range between 103 and 107,
and values of the ratio between the side of the heater and the side
of the cavity in the range between 0.3 and 0.7. For any size of the
heater, a dimensionless correlation between the average Nusselt
number and the Rayleigh number in the range between 105 and 107

was derived. Two-dimensional results for a square cavity with
a heater of dimensionless size of 0.5 were also obtained at different
Rayleigh numbers.
Table 1
Grid sensitivity analysis at Ra ¼ 104 and 4 ¼ 0� , and Ra ¼ 106 and 4 ¼ 0� and 60� .

Ra 4 Ds Mesh size NuH % NuC

104 0� 10e3 20 � 20 3.834 �0.55 1.919
40 � 40 3.855 �0.07 1.928
52 � 52 3.858 �0.05 1.929
60 � 60 3.860 0.00 1.930

106 0� 10e4 40 � 40 14.714 5.36 7.358
60 � 60 13.965 0.93 6.982
80 � 80 13.837 0.35 6.923

100 � 100 13.789 0.00 6.888

106 60� 10e4 40 � 40 13.770 4.07 6.883
60 � 60 13.231 0.85 6.612
80 � 80 13.120 0.08 6.562

100 � 100 13.109 0.00 6.547
He et al. [18] carried out a numerical parametric analysis on liquid-
filled parallelepipedal enclosures with a square vertical wall of side H
cooled at uniform temperature and two square isothermal heaters of
side L located one above the other at the center of the opposite square
vertical wall. Two relative sizes of the heaters L/H ¼ 0.2 and 0.3 were
considered, while the dimensionless distance between them was
fixed at 0.1. Computations were executed for different values of the
height-to-width aspect ratio of the cavity in the range between
0.625 and 20, Rayleigh numbers RaH based on the cavity height in the
range between 103 and 107, and Prandtl numbers in the range
between 5 and 140. It was found that the effect of the Prandtl number
was practically negligible. Furthermore, an optimal height-to-width
aspect ratio of the cavity formaximumheat transfer fromboth sources
of approximately 5e10 was detected at RaH ¼ 106e107. Finally, the
heat transfer rate at the top heater resulted always lower than that
at the bottom heater, regardless of the Rayleigh number and the
cavity aspect ratio.

Quite recently, Baïri et al. [19] performed an experimental and
numerical study on vertical and inclined air-filled cubic enclosures
with one sidewall cooled at uniform temperature, and the opposite
wall consisting of five superimposed strips of same height, alter-
nately heated at uniform temperature and adiabatic. Results and
correlations were reported for Rayleigh numbers based on the strip
height in the range between 103 and 3� 108, and tilting angles with
respect to gravity in the range between �90� and þ90�, showing
a substantial good agreement with prior literature data.

Other works with a bearing on the subject discussed here are
those wherein also the cooled wall is only partially active, which is
for example the case of the studies brought forth by Nithyadevi
et al. [20] and Deng [21].

The above review of the existing literature shows that the main
phenomenologic aspects of the problem are well understood, but,
at same time, the data available lack to a large extent of generality.
In fact, as most studies either deal with too specific configurations,
see refs. [3,4,7e14,17,19e21], or are characterized by a parametric
approach, see refs. [1,2,18], the use of the results obtained for design
purposes is extremely limited. In this perspective, it seems that the
only data with fairly wide ranges of applicability are those derived
by Refai Ahmed and Yovanovic [5,6], although these authors did not
take into full account the effects of the position of the heat source,
and consequently did not determine the optimal heater location for
maximum heat transfer observed by other authors. From this
viewpoint, useful results are those obtained by da Silva et al. [15,16],
although they considered only heaters with a rather limited size. In
addition, the aforementioned works by Refai Ahmed and Yova-
novic, and by da Silva et al. do not take into account either the
effects of the working fluid or the effects of the inclination of the
cavity with respect to gravity.
% Umax % Vmax % Exec time

�0.45 2.081 �2.29 2.348 �3.50 104400

�0.09 2.130 �0.24 2.433 �0.98 203100

�0.06 2.136 �0.15 2.457 �0.50 302900

0.00 2.139 0.00 2.469 0.00 400800

5.38 17.933 �2.47 24.104 �10.38 702600

0.86 18.386 �0.18 26.895 �1.01 1302600

0.49 18.419 0.02 27.168 �0.29 2202700

0.00 18.415 0.00 27.248 0.00 3800200

4.09 42.511 �2.48 33.050 �1.37 803800

0.76 43.592 �0.46 33.507 �0.95 1503600

0.23 43.794 �0.44 33.827 �0.04 2400000

0.00 43.987 0.00 33.840 0.00 4100100



Table 2
Time-step sensitivity analysis at Ra ¼ 106 and 4 ¼ 0� .

Ra 4 Mesh size Ds NuH % NuC % Umax % Vmax % Exec time

106 0� 80 � 80 10e2 15.107 3.00 7.663 2.50 19.180 1.10 28.098 2.40 504600

10e3 14.667 6.00 7.476 8.00 18.972 3.00 27.440 1.00 605000

10e4 13.837 0.01 6.923 0.01 18.419 0.01 27.168 0.01 2202700

10e5 13.836 0.00 6.922 0.00 18.418 0.00 27.166 0.00 1h5004500

Table 3
Comparison of the present solutions with the benchmark solutions of de Vahl Davis
(BM1), Mahdi and Kinney þ Hortman et al. (BM2), Wan et al. by FEM (BM3), and
Wan et al. by DSC (BM4) for a differentially heated square cavity at steady-state.

Quantities Present work BM1 BM2 BM3 BM4

Ra ¼ 103

Umax 3.654 3.649 3.649 3.489 3.643
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In this framework, the aim of the present paper is to carry out
a numerical investigation of natural convection heat transfer inside
tilted square cavities with one side cooled at uniform temperature,
and the opposite side partially heated by an isothermal source, in
order to derive heat transfer correlations spanning across ranges of
the independent variables sufficiently wide to be of help in thermal
engineering applications. The study is performed under the
assumption of two-dimensional laminar flow, for a complete range
of heater sizes and locations, Rayleigh numbers based on the side of
the cavity from 103 to 107, Prandtl numbers from 0.7 to 700, and
tilting angles of the enclosure from �75� to þ75�. The horizontal
and sub-horizontal configurations, which correspond to tilting
angles around �90�, are out of the scopes of the present investi-
gation. In fact, at such inclinations the flow patterns differ signifi-
cantly from the basic single cell that forms when the tilting angle of
the enclosure is varied between�75� andþ75�. In particular, when
the enclosure is set horizontally with the heater facing upwards,
complex flows related to Rayleigh-Bénard convection typically
occur, which may give rise to unsteady solutions, as reported in the
literature for both shallowand slender cavitiese see, e.g., Yang [22],
and Cappelli D'Orazio et al. [23]. In this perspective, the funda-
mental heat transfer features of horizontal and sub-horizontal
configurations are deemed to deserve a specific study.

Regarding the primary technical interests of this investigation, it
is worth pointing out that the configuration analysed here is strictly
related with one of the fundamental problems in the cooling of
electronic devices, that is, the optimal positioning of a discrete heat
source in a fixed volume with natural convection. In fact, in many
situations heat transfer designers prefer to avoid the use of
mechanical fans or other active equipment for the fluid circulation,
due to power consumption, excessive operating noise, or reliability
concerns. On the other hand, in modern electronic assemblies
a large number of high power dissipating components are often
packaged in modular enclosures such that space and external
cooling sources are minimal. Hence, the placement of these
components within their enclosure requires to be optimized as to
maximize the heat removal, which is the basic commitment of the
present study.
Vmax 3.708 3.697 3.690 3.686 3.686
Nu 1.116 1.118 1.113 1.117 1.073

Ra ¼ 104

Umax 16.242 16.178 16.180 16.122 15.967
Vmax 19.714 19.617 19.629 19.790 19.980
Nu 2.254 2.243 2.244 2.254 2.155

Ra ¼ 105

Umax 35.008 34.730 34.739 33.390 33.510
Vmax 68.109 68.590 68.639 70.630 70.810
Nu 4.506 4.519 4.521 4.598 4.352

Ra ¼ 106

Umax 65.226 64.630 64.836 65.400 65.550
Vmax 221.598 219.360 220.461 227.110 227.240
Nu 8.879 8.800 8.825 8.976 8.632

BM1 ¼ de Vahl Davis [28].
BM2 ¼ Mahdi and Kinney [29], for Ra ¼ 103, and Hortman et al. [30], for
Ra ¼ 104e106.
BM3 ¼ Wan et al. e FEM [31].
BM4 ¼ Wan et al. e DSC [31].
2. Mathematical formulation

A fluid-filled, square enclosure of width W is cooled at one side,
and partially heated at the opposite side. The discrete heat source,
of length L, whose center is located at a distance d from the bottom
wall of the enclosure, is kept at uniform temperature tH, while the
cooled side is maintained at temperature tC. The remaining upper
and lower parts of the heated sidewall, as well as the top and
bottom walls of the cavity, are considered perfectly insulated. A
zero surface emissivity is assumed for the confining walls, which
physically corresponds to perfectly polished surfaces, thus implying
that the present situation involves pure natural convection, i.e.,
absence of surface-to-surface radiation. The enclosure is tilted at an
angle 4 with respect to the gravity vector, as depicted in Fig. 1, in
which the (x,y) coordinate system adopted and the thermal state of
the boundary walls are also represented.
The flow is assumed to be two-dimensional, laminar and
incompressible, with constant fluid properties and negligible
viscous dissipation and pressure work. The buoyancy effects on
momentum transfer are taken into account through the customary
Boussinesq approximation.

Once the above assumptions are employed in the conservation
equations of mass, momentum and energy, the following set of
governing equations is obtained:

V$V ¼ 0 (1)

vV
vs

þ ðV$VÞV ¼ �VP þ V2V � Ra
Pr

T
g
g

(2)

vT
vs

þ ðV$VÞT ¼ 1
Pr
V2T (3)

where V is the velocity vector having dimensionless velocity
components U and V normalized by n/W, T is the dimensionless
temperature excess over the uniform temperature of the cooled
sidewall normalized by the temperature difference (tH � tC), s is the
dimensionless time normalized by W2/n, P is the dimensionless
pressure normalized by rn2/W2, g is the gravity vector, Pr ¼ n/a is
the Prandtl number, and Ra is the Rayleigh number defined as:

Ra ¼ gbðtH � tCÞW3

an
(4)



Table 4
Comparison of the present solutions with the solutions of Frederick and Quiroz for
an air-filled, untilted square cavity with E ¼ 0.5 and D ¼ 0.5 at steady-state.

Ra E ¼ 0.5, D ¼ 0.5, 4 ¼ 0� , Pr ¼ 0.7 NuH

103 Present work 0.985
Frederick and Quiroz [17] 1.000

104 Present work 1.879
Frederick and Quiroz [17] 1.831

105 Present work 3.630
Frederick and Quiroz [17] 3.455

106 Present work 6.737
Frederick and Quiroz [17] 6.788

0

2

4

6

8

10

12

14

Berkovsky-Polevikov correlation

present work

Pr = 0.7, ϕ  = 0°, E = 1, D = 0.5

Rayleigh number

av
er

ag
e 

N
us

se
lt 

nu
m

be
r

104 105 106

Fig. 2. Comparison between the present numerical results and the BerkovskyePolevikov
correlation for an air-filled, upright enclosure heated over the entire sidewall.

M. Corcione, E. Habib / International Journal of Thermal Sciences 49 (2010) 797e808 801
Other parameters which enter into this study are:

(a) the dimensionless size of the heater

E ¼ L
W

0:1 � E � 1 (5)
(b) the dimensionless location of the heater

D ¼ d
W

E=2 � D � 1� E=2 (6)
12

14

Pr = 7, ϕ  = 0°, E = 1, D = 0.5
The boundary conditions assumed are: (a) T ¼ 1 and V ¼ 0 at
the heated surface; (b) T¼ 0 and V¼ 0 at the cooled surface; and (c)
vT/vn ¼ 0 and V ¼ 0 at the adiabatic surfaces, where n denotes the
normal to the surface.

The initial conditions assumed are fluid at rest, i.e., V ¼ 0, and
uniform temperature T ¼ 0 throughout the whole cavity.

3. Computational procedure

The set of governing eqs. (1)�(3) along with the boundary and
initial conditions stated above is solved through a control-volume
formulation of the finite-difference method. The pressure-velocity
coupling is handled through the SIMPLE-C algorithm described by
Van Doormaal and Raithby [24], which is essentially amore implicit
variant of the SIMPLE algorithm developed by Patankar and
Spalding [25]. The QUICK discretization scheme proposed by Leo-
nard [26] is used for the evaluation of the interface fluxes. A
second-order backward scheme is used for time stepping. Starting
from the assigned initial fields of the dependent variables across
the cavity, at each time-step the discretized governing equations
are solved iteratively through a line-by-line application of the
Thomas algorithm, enforcing under-relaxation to ensure conver-
gence. Details on the SIMPLE procedure, as well as on enhanced
variants of the basic algorithm, may be found in Patankar [27].
Table 5
Comparison of the present results for the optimum heater location with the data
obtained by da Silva et al. for an air-filled, untilted square cavity with E ¼ 0.2 at
steady-state.

Ra E ¼ 0.2, 4 ¼ 0� , Pr ¼ 0.7 Dopt

103 Present work 0.490
da Silva et al. [15] 0.483

104 Present work 0.440
da Silva et al. [15] 0.433

105 Present work 0.380
da Silva et al. [15] 0.371

106 Present work 0.300
da Silva et al. [15] 0.292
The computational spatial domain is covered with a non-
uniform grid, having a higher concentration of grid lines near the
boundary walls and both ends of the heat source, and a uniform
spacing throughout the remainder interior of the cavity. Time dis-
cretization is chosen uniform. Within each time-step, the spatial
solution is considered to be converged when the maximum abso-
lute values of both the mass source and the relative changes of the
dependent variables at any grid-node from iteration to iteration are
smaller than the prescribed values, i.e., 10�4 and 10�5, respectively.
Time-integration is stopped once steady-state is reached. This
means that the simulation procedure ends when the relative
difference between the incoming and outgoing heat transfer rates,
and the relative changes of the time-derivatives of the dependent
variables at any grid-node between two consecutive time-steps, are
smaller than the pre-set values, i.e., 10�6 and 10�7, respectively.

Once steady-state is reached, the average Nusselt numbers NuH
and NuC of the heater and the cooled wall, respectively, are
calculated:

NuH ¼ qinW
kLðtH � tCÞ

¼ QinW
L

¼ 1
E
Qin ¼ �1

E

ZDþE=2

D�E=2

vT
vX

����X¼0
dY

(7)
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Fig. 3. Comparison between the present numerical results and the BerkovskyePolevikov
correlation for a water-filled, upright enclosure heated over the entire sidewall.



E = 0.1, ⏐ψ⏐ ⏐ψ⏐ ⏐ψ⏐max  = 9.35           E = 0.5, max  = 11. 86          E = 0.9, max  = 13.36 

Fig. 4. Isotherm contours for D ¼ 0.5, Ra ¼ 105, 4 ¼ 0� , Pr ¼ 0.7 and E ¼ 0.1 e 0.9.
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NuC ¼ qoutW
kWðtC � tHÞ

¼ Qout ¼ �
Z1
0

vT
vX

�����X¼1
dY (8)

where qin and qout are the heat transfer rates per unit length added
to the fluid by the heater and withdrawn from the fluid by the
cooled sidewall, respectively, and Qin ¼ qin/k(tH � tC) and
Qout ¼ �qout/k(tH � tC) are the corresponding dimensionless vari-
ables. The temperature gradients are evaluated by a second-order
profile accounting for the wall-node and the two adjacent fluid-
nodes.

Of course, since at steady-state the incoming and outgoing heat
transfer rates per unit length are the same, that is, qin ¼ �qout ¼ q,
and then Qin ¼ �Qout ¼ Q, the following relationship between NuH
and NuC holds:

NuH ¼ NuC

E
(9)

Tests on the dependence of the results on both grid size and
time-step have been performed for several combinations of the
parameters E, D, 4, Ra, and Pr. The optimal grid size and time-step
used for computations are such that further refinements do not
yield for noticeablemodifications either in the heat transfer rates or
in the flow field, that is, the percentage changes of NuH andNuC, and
those of the maximum velocity components Umax and Vmax on the
Y-wise and X-wise midplanes of the enclosure, are smaller than
a prescribed accuracy value, i.e., 1%. In addition, the percentage
difference between the first and second members of eq. (9) has to
be smaller than 0.5%. Typically, the number of nodal points and time
stepping used for computations lie in the ranges between 40 � 40
and 120 � 120, and between 10�6 and 10�3, respectively. Selected
results of the grid sensitivity analysis are presented for E ¼ 0.5,
D ¼ 0.5, and Pr ¼ 0.7, in Table 1, in which the values of NuH, NuC,
Umax, and Vmax, and their respective percent changes between
consecutive grid configurations, are reported. For any grid size, the
D = 0.1, ⏐ψ⏐max  = 14.81        D = 0.5, ⏐ψ⏐ma

Fig. 5. Isotherm contours for E ¼ 0.2, Ra ¼ 1
execution times needed to reach the steady-state are also indicated.
It may be seen that a denser grid is required at higher Rayleigh
numberse note that a grid size of 52� 52 is deemed to be adequate
at Ra¼ 104 and 4¼ 0�, while a grid size of 80� 80 is necessitated at
Ra ¼ 106 and 4 ¼ 0�. In contrast, the grid-spacing is practically
insensitive to the cavity inclinatione note that at Ra¼ 106 the same
grid size of 80 � 80 gives acceptable results for both 4 ¼ 0�

and 4 ¼ 60�. As regards the time stepping, its effects are shown in
Table 2 for Ra ¼ 106, 4 ¼ 0�, E ¼ 0.5, D ¼ 0.5, and Pr ¼ 0.7. It may be
observed that the quality of the asymptotic solution of the inte-
grationprocedure depends very fewon the time-step, provided that
the time-step is sufficiently short. In this perspective, the time-steps
used for computations were as long as possible in order to reach
a compromise between solution accuracy and computation time.
Note that the execution times reported in Tables 1 and 2 pertain to
simulations performed by a personal computer equipped with
a Quad-Core 9650 processor. From their analysis, it is evident that,
for the assigned precision, the computation time dependsmainly on
the Rayleigh number, and much less on the cavity inclination.

Moreover, some test runs have also been executedwith the initial
uniform dimensionless temperature of the fluid set to 0.5 or 1, with
the scope to determine what effect these initial conditions could
have on the steady-state flow and temperature patterns. Asymptotic
solutions practically identical to those obtained assuming T ¼ 0
throughout the enclosure at s ¼ 0 were obtained for all the config-
urations examined.

Finally, in order to validate the numerical code used for the
present study, the steady-state solutions obtained for s / N in
a vertical square cavity with differentially heated sides and adia-
batic top and bottom walls for Rayleigh numbers from 103 to 106,
have been compared with the benchmark results obtained by de
Vahl Davis [28] through a standard finite-difference method, as
shown in Table 3. In particular, the average Nusselt numbers as well
as the maximum horizontal and vertical velocity components, on
the vertical and horizontal midplanes, respectively, are well within
1% of the benchmark data listed in column BM1. The following
x  = 10. 16         D = 0.9, ⏐ψ⏐max  = 6.38 

05, 4 ¼ 0� , Pr ¼ 0.7 and D ¼ 0.1 e 0.9.
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Fig. 6. Isotherm contours for E ¼ 0.4, D ¼ 0.5, 4 ¼ 0� , Pr ¼ 0.7 and Ra ¼ 103e107.
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additional benchmark solutions are also reported for further
comparison: (a) the results obtained through finite-volume
methods by Mahdi and Kinney [29], for Ra ¼ 103, and by Hortman
et al. [30], for Ra ¼ 104 to 106, are listed in column BM2; (b) the
results obtained through a finite-elementmethod byWan et al. [31]
are listed in column BM3; and (c) the results obtained through
a discrete singular convolution algorithm by Wan et al. [31] are
listed in column BM4. It is worth noticing that our dimensionless
velocity results have been multiplied by the Prandtl number before
being inserted in Table 3, so as to account for the choice of the ratio
between kinematic viscosity of the fluid and characteristic length
as scale factor for the velocity, instead of the ratio between thermal
diffusivity of the fluid and characteristic length, used in refs. [28] to
[31]. In addition, the average Nusselt numbers NuH obtained from
the simulations performed for 4 ¼ 0� and Pr ¼ 0.7 are compared
with the two-dimensional data of Frederick and Quiroz [17] for
E¼ 0.5,D¼ 0.5, and Ra¼ 103 to 106, as reported in Table 4, where an
overall good degree of agreement may be observed, with
a maximum percentage difference of 5%. Moreover, the optimum
heater location for maximum heat transfer Dopt derived through
the simulations carried out for E ¼ 0.2, 4 ¼ 0� and Pr ¼ 0.7 are
compared with the data of da Silva et al. [15] for Ra ¼ 103 to 106, as
reported in Table 5. Also in this case, the concordance between the
present results and the literature data is rather good, with
a maximum percentage difference lower than 3%. The validation of
the simulation procedure terminates with a comparison between
the average Nusselt numbers NuH^NuC computed numerically for
4 ¼ 0�, E ¼ 1, D ¼ 0.5, and Ra ¼ 104 to 106, and the usually rec-
ommended BerkovskyePolevikov correlation based on experi-
mental and numerical data of laminar natural convection in
a rectangular cavity heated and cooled from the side with an aspect
ratio near unity [32,33]. For both cases of Pr ¼ 0.7 and Pr ¼ 7,
displayed in Figs. 2 and 3, respectively, the correspondence
between numerical and literature data is widely satisfactory.
    ϕ = 0°,  ⏐ψ⏐max  = 10.16                 ϕ = −30°,  ⏐ψ⏐max  

Fig. 7. Isotherm contours for E ¼ 0.2, D ¼ 0.5
4. Results and discussion

Numerical simulations are performed for different values of (a)
the dimensionless size of the heater, E, in the range between 0.1 and
1, (b) the dimensionless location of the heater, D, in the range
between E/2 and (1� E/2), (c) the tilting angle of the enclosure with
respect to the gravity vector, 4, in the range between �75� and
þ75�, where negative or positive angles correspond to configura-
tions with the heater facing either downwards or upwards, (d) the
Rayleigh number based on the side of the enclosure, Ra, in the range
between 103 and 107, and (e) the Prandtl number, Pr, in the range
between 0.7 and 700.

The discussion of the results is organized as follows: the data for
Pr ¼ 0.7, which corresponds to air, are reported and discussed first,
in order to stress the effects of the heater size and location, the
Rayleigh number, and the tilting angle, on the thermal performance
of the enclosure; subsequently, emphasis is given to the effects of
the Prandtl number; finally, a set of dimensionless correlating
equations is proposed.

A selection of local results for Pr ¼ 0.7 is presented in Figs. 4�9,
where isotherm contours, corresponding to equispaced values of
the dimensionless temperature T in the range between 0 and 1, are
plotted for different sets of values of E, D, Ra, and 4, in order to
highlight the effects of these independent variables on the
temperature field, and then on the amount of heat exchanged at the
heater surface. As regards the fluid motion, the related streamline
plots are omitted for the sake of brevity. Indeed, as expected, for all
the configurations examined the flow field consists basically of
a single roll-cell that derives from the rising of the hot fluid adja-
cent to the heater and its descent along the opposite cooled side-
wall. For each configuration examined, indications on the rate of
fluid circulation are given in terms of jjjmax, i.e., the maximum
absolute value of the dimensionless stream function j, that is
defined as usual through U ¼ vJ/vY and V ¼ �vJ/vX.
= 4.94                      ϕ = −60°,  ⏐ψ⏐max  = 2.41 

, Ra ¼ 105, Pr ¼ 0.7 and 4 ¼ 0� to �60� .
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Fig. 8. Isotherm contours for E ¼ 0.2, D ¼ 0.1, Ra ¼ 105, Pr ¼ 0.7 and 4 ¼ 0� to þ60� .
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As far as the overall results are concerned, the heat transfer
performance of the cavity is expressed in terms of the average
Nusselt number of the cooled sidewall NuC, which is considered
more suitable for this purpose than that of the heater NuH. In fact,
once both Ra and D are assigned, the amount Q of heat transferred
across the cavity obviously increases as the length E of the heater
increases, regardless of the tilting angle and the Prandtl number.
Correspondingly, a Nusselt number which would describe the
thermal behavior of the cavity “at a glance” should increase with
increasing E. Actually, according to eq. (7), NuH¼ Q/E, thus implying
that NuH may either increase or decrease with increasing E,
depending on whether vQ/vE is positive or negative. In contrast,
based on eq. (8), NuC ¼ Q, which means that NuC unequivocally
increases with E. On the other hand, the Nusselt number NuC
coincides with the average Nusselt number of the heater Nu* when
the heater size L is used as characteristic length instead of thewidth
W of the cavity:

Nu* ¼ qinL
kLðtH � tCÞ

¼ Qin ¼ E$NuH ¼ NuC (10)

Indeed, as Nu* represents the dimensionless amount of thermal
power exchanged at the heater surface, it delivers a straight
information on the effectiveness of heat removal from the discrete
source rather than NuH, which is nothing more than the dimen-
sionless counterpart of the average coefficient of convection of the
heater. Typical distributions of the average Nusselt number Nu* for
Pr ¼ 0.7 are reported in Figs. 10�12. In particular: (a) Fig. 10 illus-
trates the dependence of Nu* on Ra for 4 ¼ 0�, with E and D as
parameters; (b) Fig. 11 illustrates the dependence of Nu* on D for
4¼ 0� and E¼ 0.2, with Ra as a parameter; and (c) Fig. 12 illustrates
the dependence of Nu* on 4 for E ¼ 0.2 and Ra ¼ 105, with D as
a parameter.
    ϕ = 0°,  ⏐ψ⏐max  = 6.38                ϕ = +30°,  ⏐ψ⏐max  =

Fig. 9. Isotherm contours for E ¼ 0.2, D ¼ 0.9
It is worth noticing that the size and location of the heater have
a direct influence upon the motion intensity. In fact, since the fluid
below the heater tends to remain relatively stagnant (see Figs. 4
and 5), the enclosure is more significantly affected by the buoy-
ancy-driven flow when the discrete source is either larger or
occupies a position lower in the cavity, as clearly denoted by the
higher values of jjjmax with increasing E and decreasing D. Thus, at
any given value of D, the effectiveness of the heat source cooling
enhances with increasing the heater size E (see Fig. 10, empty-
symbol distributions for D ¼ 0.5). In contrast, once E is fixed, the
heat transfer performance of the enclosure does not vary mono-
tonically with D (see Fig. 10, full-symbol distributions for E ¼ 0.2),
showing a peak for a location of the heater that moves toward the
bottom of the cavity as the Rayleigh number increases (see Fig. 11),
which is in full accordance with what was previously predicted by
Chu et al. and later confirmed experimentally by Turner and Flack
and numerically by da Silva et al. The existence of an optimum
heater position for maximum heat removal may be explained by
considering that, in this case, what counts is not only the motion
intensity, but also the shape of the recirculation cell. In fact, when
the discrete source is located too close to either the bottom or the
top wall of the enclosure, the rising jet of fluid cannot wash the
entire surface of the heater, thus implying that the amount of heat
exchanged by its lower or upper portion, respectively, is smaller
than that correspondingly exchanged when the heater is located at
mid-height. This is, e.g., shown in Fig. 13, where the distributions of
the local Nusselt number along the surface of the discrete source
[�(vT/vX)]X¼0 are plotted for 4 ¼ 0�, Ra ¼ 105, E ¼ 0.2, and three
different values of D. However, as expected, the influence of the
heater location on the heat transfer rate has resulted to decrease
with increasing E, up to vanishing for E > 0.6.

As far as the effects of the Rayleigh number are concerned (see
Fig. 6), it may be seen that at Ra ¼ 103 the isotherm lines are nearly
vertical in most of the enclosure, denoting the conduction-
 11.49                     ϕ = +60°,  ⏐ψ⏐max  = 18.29 

, Ra ¼ 105, Pr ¼ 0.7 and 4 ¼ 0� to þ60� .
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dominated heat transfer mechanism. As Ra gets higher, and then
the buoyancy forces increases more and moreover the viscous
forces, the isotherm lines are progressively more distorted and
warped around the center of rotation, and at same time
compressed toward the thermally active walls, which leads to an
enhancement of the heat transfer rate (see Figs. 10 and 11). At
Ra ¼ 106 the formation of thin boundary layers adjacent to the
heater and the cooled wall, and the contemporary well defined
horizontal fluid stratification in themiddle of the cavity, reflect that
advection is the dominant heat transfer mechanism inside the
enclosure.

The effects of the tilting angle of the cavity differ according as
the inclination is positive or negative, i.e., depending on the fact
that the heater faces upwards or downwards, and according as D is
small or large. For negative tilting angles (see Fig. 7), the motion
intensity decreases significantly and the fluid tends to get
increasingly more stratified as the inclination of the cavity
increases, which degrades the heat transfer performance of the
enclosure, regardless of the heater position (see Fig. 12). In contrast,
for positive tilting angles, the heater position plays a special role in
determining the heat transfer performance of the cavity. In fact, for
small values of D, i.e., D < 0.3 (see Fig. 8), the flow tends to separate
from the discretely heated wall, at a point that moves slightly
downwards with increasing the tilting angle of the cavity. Conse-
quently, also the rising jet of warm fluid impinges upon the cooled
sidewall at a point that shifts downwards with 4. This brings about
a widening of the stagnation region located upstream the
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Fig. 11. Distributions of Nu* vs. D for Pr ¼ 0.7, 4 ¼ 0� , E ¼ 0.2 and Ra ¼ 103e107.
impingement point, thus implying that the amount of heat trans-
ferred to the upper portion of the cooled wall decreases with 4, as
shown in Fig. 14, where the distributions of the local Nusselt
number along the cooled wall are plotted for Ra ¼ 105, E ¼ 0.2,
D ¼ 0.1, and three different values of 4. The opposite behavior is
instead observed for large values of D, i.e., D > 0.5 (see Fig. 9). In
fact, in such case, the more the cavity is inclined, the more the
breakdown of the fluid thermal stratification in the upper region of
the enclosure is promoted, which leads to a significant increase of
the heat transfer rate (see Fig. 12).

As regards the dependence of the optimum position of the
heater on the cavity inclination, a set of distributions of Nu* vs. D
are plotted in Fig. 15 for E ¼ 0.2, Ra ¼ 105, with 4 as a parameter. It
may be seen that Dopt either increases or decreases with the incli-
nation of the enclosure according as the tilting angle is positive or
negative. However, for negative angles the distribution of Nu* tends
to be progressively smoother with increasing the inclination of the
cavity, which implies that the amount of heat transferred across the
enclosure tends to become practically independent of the heater
location, and then the search for the value of Dopt loses almost
completely of importance.

Finally, the effects of the Prandtl number are illustrated in
Fig. 16, where the distributions of Nu* vs. Ra are plotted for 4 ¼ 0�,
D¼ 0.5, E¼ 0.2, and different values of Pr. It may be noticed that the
average Nusselt number increases with increasing the Prandtl
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number, with a decreasing gradient, which is quite typical for
intermediate Prandtl numbers. In addition, the distributions of the
average Nusselt number for liquids maintain the same trends of
those already derived for air, but the optimum location of the
heater for maximum heat transfer tends to shift toward the bottom
of the enclosure, i.e., Dopt tends to decrease, with increasing the
Prandtl number, as e.g. reported in Fig. 17, where the distributions
of Nu* vs. D are plotted for 4 ¼ 0�, E ¼ 0.2, Ra ¼ 107, and different
values of Pr.

The whole set of numerical results obtained for the optimum
position Dopt of the heater for 103 � Ra� 107, 0.7� Pr� 700, 4� 0�

and E � 0.6 (recall that the heater location ceases to be a mean-
ingful independent variable for both negative inclinations of the
cavity and too large sizes of the heater) may be correlated through
the following algebraic equation, which is derived by a multiple
regression procedure:

Dopt ¼ 0:555 Ra�0:0167

 
E

cos43 Pr0:125

!0:03ln Ra�0:3

(11)

with a 2.3% standard deviation of error and range of relative error
between pairs of the raw data and the predictions from �9.7%
toþ 6.5%. Correspondingly, theNusselt number Nu*opt of the discrete
heat source located at the optimum position Dopt is given by the
following algebraic equation:
Ra = 105, E = 0.2, Pr = 0.7
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Nu*opt ¼ 1
3:77

 
Ra E1:5Pr
Prþ 0:2

!0:25

(12)

with a 4.0% standard deviation of error and range of relative error
from �6.4% to þ 8.4%.

In addition, with specific reference to the vertical setting and to
positive tilting angles of the cavity (i.e., 4 � 0�), which are
undoubtedly the most attractive configurations by the thermal
engineering design viewpoint, a multiple regression analysis of the
numerical results obtained for the average Nusselt number Nu* of
the heater for 0.1 � E � 1, E/2 � D � (1 � E/2), 103 � Ra � 107, and
0.7 � Pr � 700, produces the following semi-empirical correlating
equations:

a) for D � Dopt and E � 0.6

Nu* ¼ 0:107
 
Ra E1:5cos34Pr

!0:25

(13)

A4 þ BD Prþ 0:2

where

A4 ¼ 0:162þ 0:48cos34� 0:23cos64 (14)

BD ¼ �
Dopt � D

�2 (15)
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with a 5.8% standard deviation of error and a�10% range of relative
error with a 94% level of confidence;

b) for (D > Dopt and E � 0.6) or (E > 0.6 and cD)

Nu* ¼ 1
�0:17

 
Ra E1:5Pr

!0:25

(16)

3:6þ 39 Ra C4BD Prþ 0:2

where BD is given by eq. (15) and

C4 ¼ 1� 1:25cos34þ 1:75cos64 (17)

with a 5.5% standard deviation of error and a�10% range of relative
error with a 95% level of confidence. Note that the value for Dopt to
be employed in eq. (15) is the one obtained through eq. (11). In
particular, this holds true also for E > 0.6, which implies the use of
eq. (16), although eq. (11) is applicable only for E� 0.6, as indicated
above. Therefore, it must be clear that the value ofDopt derived from
eq. (11) for E > 0.6 has the only scope to calculate Nu* through eq.
(16), ceasing completely to have the meaning of optimum position
of the heater for maximum heat removal.
5. Conclusions

Laminar natural convection heat transfer inside fluid-filled, til-
ted square cavities cooled at one side and partially heated at the
opposite side, has been studied numerically. Simulations have been
performed for different values of the ratio between the length of
the heater and the width of the cavity, E, in the range between 0.1
and 1, the ratio between the distance of the center of the heater
from the bottom endwall of the cavity and the width of the cavity,
D, in the range between E/2 and (1 � E/2), the Rayleigh number
based on the width of the cavity, Ra, in the range between 103 and
107, the Prandtl number of the working fluid, Pr, in the range
between 0.7 and 700, and the tilting angle of the enclosure with
respect to the gravity vector, 4, in the range between �75� and
þ75�.

New dimensionless correlating equations with substantially
good standard deviations of error and ranges of error, have been
developed for the average Nusselt number and the optimum heater
location for maximum heat removal.

The main results obtained in the present study may be
summarized as follows:

(a) The average Nusselt number increases with increasing the
Rayleigh and Prandtl numbers, as well as with increasing the
dimensionless size of the heater.

(b) For negative tilting angles, which correspond to configurations
with the heater facing downwards, the amount of heat trans-
ferred across the enclosure degrades with increasing the cavity
inclination.

(c) For positive inclinations, which correspond to configurations
with the heater facing upwards, the heat transfer rate may
either increase or decrease with increasing the tilting angle,
according as the heater is located toward the top or the bottom
of the enclosure.

(d) The average Nusselt number has a peak for intermediate
positions of the discrete source, the higher are the Rayleigh and
Prandtl numbers, the closer to the bottom of the cavity is such
optimum location of the heater for maximum heat removal.

(e) For positive inclinations, the optimum heater location shifts
toward the bottom of the enclosure with increasing the tilting
angle, while the effect of the heater location on the thermal
performance of the system is marginal for negative inclinations
of the enclosure.

Nomenclature

D dimensionless location of the heater
d distance of the center of the heater from

the bottom wall, m
E dimensionless size of the heater
g gravity vector, m s�2

g gravitational acceleration, m s�2

k thermal conductivity of the fluid, W m�1 K�1

L length of the heater, m
Nu average Nusselt number based on W
Nu* average Nusselt number based on L
P dimensionless pressure
Pr Prandtl number
Q dimensionless heat transfer rate per unit length
q heat transfer rate per unit length, W m�1

Ra Rayleigh number based on W
T dimensionless temperature
t temperature, K
U X-wise dimensionless velocity component
V dimensionless velocity vector
V Y-wise dimensionless velocity component
W width of the cavity, m
X,Y dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity of the fluid, m2 s�1

b coefficient of volumetric thermal expansion
of the fluid, K�1

n kinematic viscosity of the fluid, m2 s�1

r density of the fluid, kg m�3

s dimensionless time
4 tilting angle of the enclosure with respect to gravity, deg
j dimensionless stream function

Subscripts
C cold
H hot
in incoming
max maximum value
opt optimum
out outgoing
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